login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325043
Heinz numbers of integer partitions, with at least three parts, whose product of parts is one fewer than their sum.
0
18, 60, 168, 216, 400, 528, 1248, 2240, 2880, 3264, 7296, 14080, 17664, 25088, 32256, 41472, 44544, 66560, 95232, 153600, 227328, 315392, 348160, 405504, 503808, 1056768, 1556480, 2310144, 2981888, 3833856, 5210112, 6881280, 7536640, 7929856, 8847360, 11599872
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers with at least three prime factors (counted with multiplicity) whose product of prime indices (A003963) is one fewer than their sum of prime indices (A056239).
FORMULA
a(n) = 2 * A301988(n).
EXAMPLE
The sequence of terms together with their prime indices begins:
18: {1,2,2}
60: {1,1,2,3}
168: {1,1,1,2,4}
216: {1,1,1,2,2,2}
400: {1,1,1,1,3,3}
528: {1,1,1,1,2,5}
1248: {1,1,1,1,1,2,6}
2240: {1,1,1,1,1,1,3,4}
2880: {1,1,1,1,1,1,2,2,3}
3264: {1,1,1,1,1,1,2,7}
7296: {1,1,1,1,1,1,1,2,8}
14080: {1,1,1,1,1,1,1,1,3,5}
17664: {1,1,1,1,1,1,1,1,2,9}
25088: {1,1,1,1,1,1,1,1,1,4,4}
32256: {1,1,1,1,1,1,1,1,1,2,2,4}
41472: {1,1,1,1,1,1,1,1,1,2,2,2,2}
44544: {1,1,1,1,1,1,1,1,1,2,10}
66560: {1,1,1,1,1,1,1,1,1,1,3,6}
95232: {1,1,1,1,1,1,1,1,1,1,2,11}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[10000], And[PrimeOmega[#]>2, Times@@primeMS[#]==Total[primeMS[#]]-1]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 25 2019
EXTENSIONS
More terms from Jinyuan Wang, Jun 27 2020
STATUS
approved