login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325041
Heinz numbers of integer partitions whose product of parts is one greater than their sum.
14
1, 15, 42, 54, 100, 132, 312, 560, 720, 816, 1824, 3520, 4416, 6272, 8064, 10368, 11136, 16640, 23808, 38400, 56832, 78848, 87040, 101376, 125952, 264192, 389120, 577536, 745472, 958464, 1302528, 1720320, 1884160, 1982464, 2211840, 2899968, 5996544
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1) * ... * prime(y_k), so these are numbers whose product of prime indices (A003963) is one more than their sum of prime indices (A056239).
FORMULA
A003963(a(n)) = A056239(a(n)) + 1.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
15: {2,3}
42: {1,2,4}
54: {1,2,2,2}
100: {1,1,3,3}
132: {1,1,2,5}
312: {1,1,1,2,6}
560: {1,1,1,1,3,4}
720: {1,1,1,1,2,2,3}
816: {1,1,1,1,2,7}
1824: {1,1,1,1,1,2,8}
3520: {1,1,1,1,1,1,3,5}
4416: {1,1,1,1,1,1,2,9}
6272: {1,1,1,1,1,1,1,4,4}
8064: {1,1,1,1,1,1,1,2,2,4}
10368: {1,1,1,1,1,1,1,2,2,2,2}
11136: {1,1,1,1,1,1,1,2,10}
16640: {1,1,1,1,1,1,1,1,3,6}
23808: {1,1,1,1,1,1,1,1,2,11}
38400: {1,1,1,1,1,1,1,1,1,2,3,3}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[10000], Times@@primeMS[#]==Total[primeMS[#]]+1&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 25 2019
STATUS
approved