login
A324772
The "Octanacci" sequence: Trajectory of 0 under the morphism 0->{0,1,0}, 1->{0}.
3
0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0
OFFSET
0
COMMENTS
The sequence is S_oo where S_0 = 1, S_1 = 0; S_{n+2} = S_{n+1} S_n S_{n+1}.
Used to construct the "labyrinth" tiling.
The binary complement, trajectory of 1 under the morphism 0->1, 1->101, is given by A104521. - Michel Dekking, Sep 04 2022
LINKS
M. Baake and R. V. Moody, Self-Similar Measures for Quasicrystals, in Directions in Mathematical Quasicrystals (eds. M. Baake and R. V. Moody), CRM Monograph Series, vol. 13, AMS, Providence, RI (2000), pp. 1-42; arXiv:math/0008063 [math.MG], 2000.
Clément Sire, Rémy Mosseri, and Jean-François Sadoc, Geometric study of a 2D tiling related to the octagonal quasiperiodic tiling, Journal de Physique 50.24 (1989): 3463-3476. See Eq. 2; HAL Id : jpa-00211156.
MAPLE
f(0):= (0, 1, 0): f(1):= (0): #A324772 A:= [0]:
for i from 1 to 6 do A:= map(f, A) od:
A;
MATHEMATICA
Nest[Function[l, Flatten[l/.{0->{0, 1, 0}, 1->{0}}]], {1}, 6] (* Vincenzo Librandi, Mar 14 2019 *)
CROSSREFS
See A106035 for version over {1,2}.
Sequence in context: A324964 A285957 A292273 * A285949 A285530 A317542
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 13 2019
STATUS
approved