OFFSET
1,1
COMMENTS
Primes p such that 3 is a primitive root modulo p (i.e., p is in A019334) and that p == 1 (mod 7).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
Eric Weisstein's World of Mathematics, Artin's constant
Wikipedia, Artin's conjecture on primitive roots
MAPLE
select(p -> isprime(p) and numtheory:-order(3, p)=p-1, [seq(i, i=1..10000, 7)]); # Robert Israel, Sep 01 2019
PROG
(PARI) forprime(p=5, 5500, if(znorder(Mod(3, p))==(p-1) && p%7==1, print1(p, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Aug 30 2019
STATUS
approved