OFFSET
0,2
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 154.
LINKS
G. C. Greubel, Antidiagonals n = 0..50, flattened
FORMULA
A(n, k) = binomial(n + k - 2, k - 1) + 1. Note that binomial(n, n) = 0 if n < 0.
A(n, k) = A(k, n) with the exception A(1,0) != A(0,1).
A(n, n) = binomial(2*n-2, n-1) + 1 = A323230(n).
From G. C. Greubel, Dec 27 2021: (Start)
T(n, k) = binomial(n-2, k-1) + 1 with T(n, 0) = 1 + [n=1], T(n, n) = 1.
T(2*n, n) = A323230(n).
Sum_{k=0..n} T(n,k) = n + 1 + 2^(n-2) - [n=0]/4 + [n=1])/2. (End)
EXAMPLE
Array starts:
[0] 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
[1] 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ... A040000
[2] 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... A000027
[3] 1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, ... A000124
[4] 1, 2, 5, 11, 21, 36, 57, 85, 121, 166, 221, ... A050407
[5] 1, 2, 6, 16, 36, 71, 127, 211, 331, 496, 716, ... A145126
[6] 1, 2, 7, 22, 57, 127, 253, 463, 793, 1288, 2003, ... A323228
[7] 1, 2, 8, 29, 85, 211, 463, 925, 1717, 3004, 5006, ...
[8] 1, 2, 9, 37, 121, 331, 793, 1717, 3433, 6436, 11441, ...
[9] 1, 2, 10, 46, 166, 496, 1288, 3004, 6436, 12871, 24311, ...
.
Read as a triangle (by descending antidiagonals):
1
2, 1
1, 2, 1
1, 2, 2, 1
1, 2, 3, 2, 1
1, 2, 4, 4, 2, 1
1, 2, 5, 7, 5, 2, 1
1, 2, 6, 11, 11, 6, 2, 1
1, 2, 7, 16, 21, 16, 7, 2, 1
1, 2, 8, 22, 36, 36, 22, 8, 2, 1
1, 2, 9, 29, 57, 71, 57, 29, 9, 2, 1
.
A(0, 1) = C(-1, 0) + 1 = 2 because C(-1, 0) = 1. A(1, 0) = C(-1, -1) + 1 = 1 because C(-1, -1) = 0. Warning: Some computer algebra programs (for example Maple and Mathematica) return C(n, n) = 1 for n < 0. This contradicts the definition given by Graham et al. (see reference). On the other hand this definition preserves symmetry.
MAPLE
Binomial := (n, k) -> `if`(n < 0 and n = k, 0, binomial(n, k)):
A := (n, k) -> Binomial(n + k - 2, k - 1) + 1:
seq(lprint(seq(A(n, k), k=0..10)), n=0..10);
MATHEMATICA
T[n_, k_]:= If[k==0, 1 + Boole[n==1], If[k==n, 1, Binomial[n-2, k-1] + 1]];
Table[T[n, k], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Dec 27 2021 *)
PROG
(Sage)
def Arow(n):
R.<x> = PowerSeriesRing(ZZ, 20)
gf = 1/(1-x) + x/(1-x)^n
return gf.padded_list(10)
for n in (0..9): print(Arow(n))
(Julia)
using AbstractAlgebra
function Arow(n, len)
R, x = PowerSeriesRing(ZZ, len+2, "x")
gf = inv(1-x) + divexact(x, (1-x)^n)
[coeff(gf, k) for k in 0:len-1] end
for n in 0:9 println(Arow(n, 11)) end
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 10 2019
STATUS
approved