login
A322118
Number of non-isomorphic connected multiset partitions of weight n with no singletons that cannot be capped by a tree.
5
1, 1, 2, 3, 7, 11, 29, 55, 155, 386, 1171
OFFSET
0,3
COMMENTS
The density of a multiset partition is defined to be the sum of numbers of distinct elements in each part, minus the number of parts, minus the total number of distinct elements in the whole partition. A multiset partition is a tree if it has more than one part, is connected, and has density -1. A cap is a certain kind of non-transitive coarsening of a multiset partition. For example, the four caps of {{1,1},{1,2},{2,2}} are {{1,1},{1,2},{2,2}}, {{1,1},{1,2,2}}, {{1,1,2},{2,2}}, {{1,1,2,2}}. - Gus Wiseman, Feb 05 2021
LINKS
Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
EXAMPLE
The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8).
Non-isomorphic representatives of the a(2) = 2 through a(6) = 29 multiset partitions:
{{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}} {{1,1,1,1,1,1}}
{{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}} {{1,1,1,2,2,2}}
{{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}} {{1,1,2,2,2,2}}
{{1,2,3,3}} {{1,2,2,3,3}} {{1,1,2,2,3,3}}
{{1,2,3,4}} {{1,2,3,3,3}} {{1,2,2,2,2,2}}
{{1,1},{1,1}} {{1,2,3,4,4}} {{1,2,2,3,3,3}}
{{1,2},{1,2}} {{1,2,3,4,5}} {{1,2,3,3,3,3}}
{{1,1},{1,1,1}} {{1,2,3,3,4,4}}
{{1,2},{1,2,2}} {{1,2,3,4,4,4}}
{{2,2},{1,2,2}} {{1,2,3,4,5,5}}
{{2,3},{1,2,3}} {{1,2,3,4,5,6}}
{{1,1},{1,1,1,1}}
{{1,1,1},{1,1,1}}
{{1,1,2},{1,2,2}}
{{1,2},{1,1,2,2}}
{{1,2},{1,2,2,2}}
{{1,2},{1,2,3,3}}
{{1,2,2},{1,2,2}}
{{1,2,3},{1,2,3}}
{{1,2,3},{2,3,3}}
{{1,3,4},{2,3,4}}
{{2,2},{1,1,2,2}}
{{2,2},{1,2,2,2}}
{{2,3},{1,2,3,3}}
{{3,3},{1,2,3,3}}
{{3,4},{1,2,3,4}}
{{1,1},{1,1},{1,1}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,3},{2,3}}
CROSSREFS
Non-isomorphic tree multiset partitions are counted by A321229, or A321231 without singletons.
The version with singletons is A322110.
The weak-antichain case is counted by A322138, or A322117 with singletons.
Sequence in context: A005479 A120856 A138000 * A349420 A323067 A140108
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 26 2018
EXTENSIONS
Definition corrected by Gus Wiseman, Feb 05 2021
STATUS
approved