login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013922 Number of labeled connected graphs with n nodes and 0 cutpoints (blocks or nonseparable graphs). 10
0, 1, 1, 10, 238, 11368, 1014888, 166537616, 50680432112, 29107809374336, 32093527159296128, 68846607723033232640, 290126947098532533378816, 2417684612523425600721132544, 40013522702538780900803893881856 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Or, number of labeled 2-connected graphs with n nodes.

REFERENCES

Miklos Bona, Handbook of Enumerative Combinatorics, CRC Press, 2015, p.402.

F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 9.

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.20(b), g(n).

LINKS

R. W. Robinson, Table of n, a(n) for n = 1..25

Huantian Cao, AutoGF: An Automated System to Calculate Coefficients of Generating Functions.

Thomas Lange, Biconnected reliability, Hochschule Mittweida (FH), Fakultät Mathematik/Naturwissenschaften/Informatik, Master's Thesis, 2015.

Andrés Santos, Density Expansion of the Equation of State, in A Concise Course on the Theory of Classical Liquids, Volume 923 of the series Lecture Notes in Physics, pp 33-96, 2016. DOI:10.1007/978-3-319-29668-5_3. See Reference 40.

S. Selkow, The enumeration of labeled graphs by number of cutpoints, Discr. Math. 185 (1998), 183-191.

FORMULA

Harary and Palmer give e.g.f. in Eqn. (1.3.3) on page 10.

PROG

(PARI) seq(n)={Vec(serlaplace(log(x/serreverse(x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n)))))), -n)} \\ Andrew Howroyd, Sep 26 2018

CROSSREFS

Cf. A002218, A004115.

Row sums of triangle A123534.

Sequence in context: A096331 A159497 A177595 * A215835 A006423 A067423

Adjacent sequences:  A013919 A013920 A013921 * A013923 A013924 A013925

KEYWORD

nonn,easy,nice

AUTHOR

Stanley Selkow (sms(AT)owl.WPI.EDU)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 21:10 EST 2018. Contains 317116 sequences. (Running on oeis4.)