login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030019 Number of labeled spanning trees in the complete hypergraph on n vertices (all hyperedges having cardinality 2 or greater). 80
1, 1, 1, 4, 29, 311, 4447, 79745, 1722681, 43578820, 1264185051, 41381702275, 1509114454597, 60681141052273, 2667370764248023, 127258109992533616, 6549338612837162225, 361680134713529977507, 21333858798449021030515, 1338681172839439064846881 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Equivalently, this is the number of "hypertrees" on n labeled nodes, i.e. connected hypergraphs that have no cycles, assuming that each edge contains at least two vertices. - Don Knuth, Jan 26 2008. See A134954 for hyperforests.

Also number of labeled connected graphs where every block is a complete graph (cf. A035053).

Let H = (V,E) be the complete hypergraph on N labeled vertices (all edges having cardinality 2 or greater). Let e in E and K = |e|. Then the number of distinct spanning trees of H that contain edge e is g(N,K) = K * E[X_N^{N-K}] / N and the K=1 case gives this sequence. Clearly there is some deep structural connection between spanning trees in hypergraphs and Poisson moments.

REFERENCES

Warren D. Smith and David Warme, Paper in preparation, 2002.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..370 (first 101 terms from T. D. Noe)

Ayomikun Adeniran and Catherine Yan, Gončarov Polynomials in Partition Lattices and Exponential Families, arXiv:1907.07814 [math.CO], 2019.

Ronald Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708v1 [math.CO], 2011.

Maryam Bahrani and Jérémie Lumbroso, Enumerations, Forbidden Subgraph Characterizations, and the Split-Decomposition, arXiv:1608.01465 [math.CO], 2016.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 810.

Louis H. Kalikow, Enumeration of parking functions, allowable permutation pairs, and labeled trees, PhD thesis, Brandeis University, 1999.

R. Lorentz, S. Tringali, and C.H. Yan, Generalized Goncarov polynomials, arXiv preprint arXiv:1511.04039, 2015.

Adam Piggott, The symmetries of Mccullough-Miller space, 2011, preprint.

Adam Piggott, The symmetries of Mccullough-Miller space, Algebra and Discrete Mathematics 14(2) (2012), 239-266.

D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner Trees, PhD thesis, University of Virginia, 1998, Table 5.1.

D. M. Warme, Spanning Trees in Hypergraphs with Applications to Steiner Trees, PhD thesis, University of Virginia, 1998, Table 5.1.

Index entries for sequences related to trees

FORMULA

a(n) = A035051(n)/n for n > 0.

a(n) = Sum_{i=0...n-1} Stirling2(n-1, i) n^(i-1), n >= 1. (Warme, Corollary 3.15.1, p. 59)

a(n) = E[X_n^{n-1}] / n, n >= 1, where X_n is a Poisson random variable with mean n.

1 = Sum_{n>=0} a(n+1) * x^n/n! * exp( -(n+1)*(exp(x)-1) ). - Paul D. Hanna, Jun 11 2011

E.g.f. satisfies: A(x) = Sum_{n>=0} exp(n*x*A(x)-1)/n! = Sum_{n>=0} a(n+1)*x^n/n!. - Paul D. Hanna, Sep 25 2011

Dobinski-type formula: a(n) = 1/e^n*sum {k = 0..inf} n^(k-1)*k^(n-1)/k!. Cf. A052888. For a refinement of this sequence see A210587. - Peter Bala, Apr 05 2012

a(n) ~ n^(n-2) / (sqrt(1+LambertW(1)) * (LambertW(1))^(n-1) * exp((2-1/LambertW(1))*n)). - Vaclav Kotesovec, Jul 26 2014

MATHEMATICA

a[n_] := Sum[ StirlingS2[n-1, i]*n^(i-1), {i, 0, n-1}]; a[0] = 1; Table[a[n], {n, 0, 18}](* Jean-François Alcover, Sep 12 2012, from 2nd formula *)

PROG

(PARI) {a(n)=if(n==0, 1, (n-1)!*polcoeff(1-sum(k=0, n-2, a(k+1)*x^k/k!*exp(-(k+1)*(exp(x+O(x^n))-1))), n-1))} /* Paul D. Hanna */

(PARI) /* E.g.f. of sequence shifted left one place: */

{a(n)=local(A=1+x); for(i=1, n, A=exp(-1)*sum(m=0, 2*n+10, exp(m*x*A+x*O(x^n))/m!)); round(n!*polcoeff(A, n))} /* Paul D. Hanna */

CROSSREFS

Cf. A030438, A035051, A035053, A134954, A134956, A134958. A052888, A210587.

Sequence in context: A014622 A067146 A210949 * A303928 A201627 A195194

Adjacent sequences:  A030016 A030017 A030018 * A030020 A030021 A030022

KEYWORD

nonn,nice

AUTHOR

David Warme (warme(AT)s3i.com)

EXTENSIONS

More terms, formula and comment from Christian G. Bower Dec 15 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 02:22 EST 2020. Contains 338699 sequences. (Running on oeis4.)