login
A319329
Heinz numbers of integer partitions, whose length is equal to the GCD of the parts and whose sum is equal to the LCM of the parts, in increasing order.
1
2, 1495, 179417, 231133, 727531, 1378583, 1787387, 3744103, 4556993, 7566167, 18977519, 29629391, 30870587, 34174939, 39973571, 53508983, 70946617, 110779141, 138820187, 139681069, 170583017, 225817751, 409219217, 441317981, 493580417, 539462099, 544392433, 712797613, 802903541
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
EXAMPLE
The corresponding sequence of partitions, whose length is equal to their GCD and whose sum is equal to their LCM: (1), (9,6,3), (20,8,8,4), (24,16,4,4), (16,16,12,4).
MATHEMATICA
Select[Range[2, 10000], With[{m=If[#==1, {}, Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]}, And[LCM@@m==Total[m], GCD@@m==Length[m]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 17 2018
EXTENSIONS
More terms from Max Alekseyev, Jul 25 2024
STATUS
approved