login
A233906
Primes of the form (3^k mod k^3) + 1, in order of increasing k.
1
2, 1499, 1783, 9719, 9311, 67883, 134947, 203317, 189433, 560171, 438533, 943849, 640973, 578827, 2172383, 28687, 1505657, 7595033, 2822971, 1242379, 22899523, 9232219, 5730031, 12336083, 3487607, 35451433, 12174803, 10234079, 84459019, 68736683, 44671169, 85507057
OFFSET
1,1
LINKS
EXAMPLE
1499 is in the sequence because (3^13 mod 13^3) + 1 = 1499 which is prime.
9719 is in the sequence because (3^29 mod 29^3) + 1 = 9719 which is prime.
MAPLE
KD := proc() local a; a:=3^n mod n^3 + 1; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
CROSSREFS
Cf. A000040 (prime numbers).
Cf. A007519 (primes congruent to 1 mod 8).
Sequence in context: A023291 A319329 A058423 * A329775 A226699 A110027
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Dec 17 2013
STATUS
approved