OFFSET
1,2
COMMENTS
Discriminant of Fermat-Lucas polynomials.
Fermat-Lucas polynomials are defined as F(0) = 2, F(1) = 3*x and F(n) = 3*x*F(n - 1) - 2*F(n - 2) for n > 1.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..30
Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.
R. Flórez, R. Higuita, and A. Mukherjee, The Star of David and Other Patterns in Hosoya Polynomial Triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.
R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.
R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
Eric Weisstein's World of Mathematics, Discriminant
Eric Weisstein's World of Mathematics, Fermat-Lucas polynomials
MATHEMATICA
Array[2^((# - 1) (# + 2)/2)*3^(# (# - 1))*#^# &, 10] (* Michael De Vlieger, Aug 22 2018 *)
PROG
(PARI) apply(poldisc, Vec((2-3*x*y)/(1-3*y*x+2*x^2) - 2 + O(x^12))) \\ Andrew Howroyd, Aug 20 2018
(PARI) a(n) = 2^((n - 1)*(n + 2)/2)*3^(n*(n - 1))*n^n; \\ Andrew Howroyd, Aug 20 2018
(Magma) [2^((n - 1)*(n + 2) div 2)*3^(n*(n - 1))*n^n: n in [1..10]]; // Vincenzo Librandi, Aug 25 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Rigoberto Florez, Aug 20 2018
STATUS
approved