login
A318200
Expansion of Hypergeometric function F(17/12, 13/12; 3; 1728*x) in powers of x.
3
1, 884, 961350, 1166694360, 1514952626460, 2059469884770480, 2894070055573717020, 4170217137221937001200, 6128342594004497520113460, 9149429785497381327907574160, 13838512550564789258460205917000, 21159569553888757349236649959188000, 32653750015126185895018415883446910000
OFFSET
0,2
COMMENTS
A145493 is the convolution of A092870 and this sequence.
LINKS
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998
FORMULA
a(n) = (2*12^n/(n!*(n+2)!)) * Product_{k=0..n-1} (12k+17)*(12k+13).
a(n) = 2*(12*n+1)*(12*n+5)*A092870(n)/(5*(n+1)*(n+2)).
a(n) ~ 2^(6*n + 5) * 3^(3*n + 2) / (5 * Gamma(1/12) * Gamma(5/12) * n^(3/2)). - Vaclav Kotesovec, Aug 21 2018
PROG
(PARI) {a(n) = 2*12^n/(n!*(n+2)!)*prod(k=0, n-1, (12*k+17)*(12*k+13))}
CROSSREFS
F([b/2]+5/12, [(b+1)/2]+1/12; b+1; 1728*x): A092870 (b=0), A318174 (b=1), this sequence (b=2), A318201 (b=3).
Cf. A145493.
Sequence in context: A207131 A253507 A282156 * A295443 A261760 A031794
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 21 2018
STATUS
approved