This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137372 Triangular sequence of coefficients of Lucas polynomials using MathWorld Luca.m package: f(x,n). 0
 2, 0, 3, -4, 0, 9, 0, -18, 0, 27, 8, 0, -72, 0, 81, 0, 60, 0, -270, 0, 243, -16, 0, 324, 0, -972, 0, 729, 0, -168, 0, 1512, 0, -3402, 0, 2187, 32, 0, -1152, 0, 6480, 0, -11664, 0, 6561, 0, 432, 0, -6480, 0, 26244, 0, -39366, 0, 19683, -64, 0, 3600, 0, -32400, 0, 102060, 0, -131220, 0, 59049 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row sums are A000051 "The w-polynomials obtained by setting p(x)=3x and q(x)=-2 in the Lucas polynomial sequence.": Fermatf[n, x] LINKS Eric Weisstein's World of Mathematics, Fermat-Lucas Polynomial. EXAMPLE {2}, {0, 3}, {-4, 0, 9}, {0, -18, 0, 27}, {8, 0, -72, 0,81}, {0, 60, 0, -270, 0, 243}, {-16, 0,324, 0, -972, 0, 729}, {0, -168, 0, 1512, 0, -3402, 0, 2187}, {32, 0, -1152, 0, 6480, 0, -11664, 0, 6561}, {0, 432, 0, -6480, 0, 26244, 0, -39366, 0, 19683}, {-64, 0, 3600, 0, -32400, 0, 102060, 0, -131220, 0, 59049} MATHEMATICA << Lucas`; Table[ExpandAll[Fermatf[n, x]], {n, 0, 10}]; a = Table[CoefficientList[Fermatf[n, x], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[Fermatf[n, x], x]], {n, 0, 10}] CROSSREFS Cf. A000051. Sequence in context: A117909 A091538 A013584 * A212844 A066439 A213859 Adjacent sequences:  A137369 A137370 A137371 * A137373 A137374 A137375 KEYWORD uned,tabl,sign AUTHOR Roger L. Bagula, Apr 09 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 19 02:47 EDT 2013. Contains 225428 sequences.