login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317707
Number of powerful rooted trees with n nodes.
17
1, 1, 2, 3, 5, 6, 11, 13, 22, 29, 46, 57, 94, 115, 180, 230, 349, 435, 671, 830, 1245, 1572, 2320, 2894, 4287, 5328, 7773, 9752, 14066, 17547, 25328, 31515, 45010, 56289, 79805, 99467, 140778, 175215, 246278, 307273, 429421, 534774, 745776, 927776, 1287038
OFFSET
1,3
COMMENTS
An unlabeled rooted tree is powerful if either it is a single node or a single node with a single powerful tree as a branch, or if the branches of the root all appear with multiplicities greater than 1 and are themselves powerful trees.
LINKS
EXAMPLE
The a(7) = 11 powerful rooted trees:
((((((o))))))
(((((oo)))))
((((ooo))))
((((o)(o))))
(((oooo)))
((ooooo))
(((o))((o)))
((oo)(oo))
((o)(o)(o))
(oo(o)(o))
(oooooo)
MAPLE
h:= proc(n, k, t) option remember; `if`(k=0, binomial(n+t, t),
`if`(n=0, 0, add(h(n-1, k-j, t+1), j=2..k)))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1)*h(a(i), j, 0), j=0..n/i)))
end:
a:= proc(n) option remember; `if`(n<2, n, b(n-1$2)+a(n-1)) end:
seq(a(n), n=1..50); # Alois P. Heinz, Aug 31 2018
MATHEMATICA
purt[n_]:=If[n==1, {{}}, Join@@Table[Select[Union[Sort/@Tuples[purt/@ptn]], Or[Length[#]==1, Min@@Length/@Split[#]>1]&], {ptn, IntegerPartitions[n-1]}]];
Table[Length[purt[n]], {n, 10}]
(* Second program: *)
h[n_, k_, t_] := h[n, k, t] = If[k == 0, Binomial[n + t, t], If[n == 0, 0, Sum[h[n - 1, k - j, t + 1], {j, 2, k}]]];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]* h[a[i], j, 0], {j, 0, n/i}]]];
a[n_] := a[n] = If[n < 2, n, b[n - 1, n - 1] + a[n - 1]];
Array[a, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 05 2018
EXTENSIONS
a(27)-a(45) from Alois P. Heinz, Aug 31 2018
STATUS
approved