OFFSET
1,2
COMMENTS
A positive integer is an aperiodic tree number iff either it is equal to 1 or it belongs to A007916 (numbers that are not perfect powers, or numbers whose prime multiplicities are relatively prime) and all of its prime indices are also aperiodic tree numbers, where a prime index of n is a number m such that prime(m) divides n.
EXAMPLE
Sequence of aperiodic rooted trees begins:
01 o
02 (o)
03 ((o))
05 (((o)))
06 (o(o))
10 (o((o)))
11 ((((o))))
12 (oo(o))
13 ((o(o)))
15 ((o)((o)))
18 (o(o)(o))
20 (oo((o)))
22 (o(((o))))
24 (ooo(o))
26 (o(o(o)))
29 ((o((o))))
30 (o(o)((o)))
31 (((((o)))))
33 ((o)(((o))))
MATHEMATICA
zapQ[1]:=True; zapQ[n_]:=And[GCD@@FactorInteger[n][[All, 2]]===1, And@@zapQ/@PrimePi/@FactorInteger[n][[All, 1]]];
Select[Range[100], zapQ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 23 2018
STATUS
approved