login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301700 Number of aperiodic rooted trees with n nodes. 43
1, 1, 1, 2, 4, 10, 21, 52, 120, 290, 697, 1713, 4200, 10446, 26053, 65473, 165257, 419357, 1068239, 2732509, 7013242, 18059960, 46641983, 120790324, 313593621, 816046050, 2128101601, 5560829666, 14557746453, 38177226541, 100281484375, 263815322761, 695027102020 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

An unlabeled rooted tree is aperiodic if the multiset of branches of the root is an aperiodic multiset, meaning it has relatively prime multiplicities, and each branch is also aperiodic.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..500

EXAMPLE

The a(6) = 10 aperiodic trees are (((((o))))), (((o(o)))), ((o((o)))), ((oo(o))), (o(((o)))), (o(o(o))), ((o)((o))), (oo((o))), (o(o)(o)), (ooo(o)).

MATHEMATICA

arut[n_]:=arut[n]=If[n===1, {{}}, Join@@Function[c, Select[Union[Sort/@Tuples[arut/@c]], GCD@@Length/@Split[#]===1&]]/@IntegerPartitions[n-1]];

Table[Length[arut[n]], {n, 20}]

PROG

(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

MoebiusT(v)={vector(#v, n, sumdiv(n, d, moebius(n/d)*v[d]))}

seq(n)={my(v=[1]); for(n=2, n, v=concat([1], MoebiusT(EulerT(v)))); v} \\ Andrew Howroyd, Sep 01 2018

CROSSREFS

Cf. A000081, A000740, A000837, A001678, A003238, A004111, A007716, A007916, A100953, A276625, A284639, A290689, A298422, A303386, A303431.

Sequence in context: A165136 A165137 A065023 * A123445 A104431 A130666

Adjacent sequences:  A301697 A301698 A301699 * A301701 A301702 A301703

KEYWORD

nonn

AUTHOR

Gus Wiseman, Apr 23 2018

EXTENSIONS

Terms a(21) and beyond from Andrew Howroyd, Sep 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 13 13:48 EDT 2020. Contains 335688 sequences. (Running on oeis4.)