login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317653 Number of free pure symmetric multifunctions whose leaves are a normal multiset of size n. 9
1, 3, 34, 602, 14872, 472138, 18323359, 840503724, 44489123726, 2668985463839, 178960530393633, 13263068003965046, 1076580864432281157, 94987639225399100006, 9051397653144246683937, 926407121115738135640677, 101357200280211387377806719, 11804887470887800839909147484 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A multiset is normal if it spans an initial interval of positive integers. A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..200

EXAMPLE

The a(3) = 34 free pure symmetric multifunctions:

1[1[1]], 1[1,1], 1[1][1],

1[2[2]], 1[2,2], 2[1[2]], 2[2[1]], 2[1,2], 1[2][2], 2[1][2], 2[2][1],

1[1[2]], 1[2[1]], 1[1,2], 2[1[1]], 2[1,1], 1[1][2], 1[2][1], 2[1][1],

1[2[3]], 1[3[2]], 1[2,3], 2[1[3]], 2[3[1]], 2[1,3], 3[1[2]], 3[2[1]], 3[1,2], 1[2][3], 2[1][3], 1[3][2], 3[1][2], 2[3][1], 3[2][1].

MATHEMATICA

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];

got[y_]:=Join@@Table[Table[i, {y[[i]]}], {i, Range[Length[y]]}];

Table[Sum[Length[exprUsing[got[y]]], {y, Join@@Permutations/@IntegerPartitions[n]}], {n, 6}]

PROG

(PARI) \\ here R(n, 1) is A052893.

EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

R(n, k)={my(v=[k]); for(n=2, n, my(t=EulerT(v)); v=concat(v, sum(k=1, n-1, v[k]*t[n-k]))); v}

seq(n)={sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) )} \\ Andrew Howroyd, Sep 14 2018

CROSSREFS

Cf. A001003, A052893, A053492, A255906, A277996, A279944, A280000.

Cf. A317652, A317654, A317655, A317656, A317658.

Sequence in context: A134491 A045727 A105713 * A143638 A262673 A126753

Adjacent sequences:  A317650 A317651 A317652 * A317654 A317655 A317656

KEYWORD

nonn

AUTHOR

Gus Wiseman, Aug 03 2018

EXTENSIONS

Terms a(8) and beyond from Andrew Howroyd, Sep 14 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 04:46 EDT 2019. Contains 323579 sequences. (Running on oeis4.)