OFFSET
1,2
COMMENTS
Given a positive integer n > 1 we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Also the number of positions in the orderless Mathematica expression with e-number n.
LINKS
Mathematica Reference, Orderless
FORMULA
a(rad(x)^(prime(y_1) * ... * prime(y_k)) = a(x) + a(y_1) + ... + a(y_k).
e(2^(2^n)) = o[o,...,o].
e(2^prime(2^prime(2^...))) = o[o[...o[o]]].
e(rad(rad(rad(...)^2)^2)^2) = o[o][o]...[o].
EXAMPLE
The first twenty Mathematica expressions:
1: o
2: o[]
3: o[][]
4: o[o]
5: o[][][]
6: o[o][]
7: o[][][][]
8: o[o[]]
9: o[][o]
10: o[o][][]
11: o[][][][][]
12: o[o[]][]
13: o[][o][]
14: o[o][][][]
15: o[][][][][][]
16: o[o,o]
17: o[o[]][][]
18: o[][o][][]
19: o[o][][][][]
20: o[][][][][][][]
MATHEMATICA
nn=100;
radQ[n_]:=If[n===1, False, GCD@@FactorInteger[n][[All, 2]]===1];
rad[n_]:=rad[n]=If[n===0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
Clear[radPi]; Set@@@Array[radPi[rad[#]]==#&, nn];
exp[n_]:=If[n===1, x, With[{g=GCD@@FactorInteger[n][[All, 2]]}, Apply[exp[radPi[Power[n, 1/g]]], exp/@Flatten[Cases[FactorInteger[g], {p_?PrimeQ, k_}:>ConstantArray[PrimePi[p], k]]]]]];
Table[exp[n], {n, 1, nn}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved