login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n. 9
1, 1, 2, 6, 22, 93, 421, 2010, 9926, 50357, 260728, 1372436, 7321982, 39504181, 215168221, 1181540841, 6534058589, 36357935615, 203414689462, 1143589234086, 6457159029573, 36602333187792, 208214459462774, 1188252476400972, 6801133579291811, 39032172166792887 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions.

LINKS

Andrew Howroyd, Table of n, a(n) for n = 0..200

EXAMPLE

The a(4) = 22 free pure symmetric multifunctions:

  1[1[1[1]]]  1[1[2]]  1[3]  2[2]  4

  1[1[1][1]]  1[2[1]]  3[1]

  1[1][1[1]]  2[1[1]]

  1[1[1]][1]  1[1][2]

  1[1][1][1]  1[2][1]

  1[1[1,1]]   2[1][1]

  1[1,1[1]]   1[1,2]

  1[1][1,1]   2[1,1]

  1[1,1][1]

  1[1,1,1]

MATHEMATICA

sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];

mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {{}}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]];

Table[Sum[Length[exprUsing[y]], {y, IntegerPartitions[n]}], {n, 0, 6}]

PROG

(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}

seq(n)={my(v=[]); for(n=1, n, my(t=EulerT(v)); v=concat(v, 1 + sum(k=1, n-1, v[k]*t[n-k]))); concat([1], v)} \\ Andrew Howroyd, Aug 28 2018

CROSSREFS

Cf. A001003, A052893, A053492, A277996, A279944, A280000.

Cf. A317653, A317654, A317655, A317656, A317658.

Sequence in context: A229741 A261518 A185349 * A150274 A109317 A109153

Adjacent sequences:  A317649 A317650 A317651 * A317653 A317654 A317655

KEYWORD

nonn

AUTHOR

Gus Wiseman, Aug 03 2018

EXTENSIONS

Terms a(12) and beyond from Andrew Howroyd, Aug 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 08:13 EST 2020. Contains 338868 sequences. (Running on oeis4.)