The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317652 Number of free pure symmetric multifunctions whose leaves are an integer partition of n. 9
 1, 1, 2, 6, 22, 93, 421, 2010, 9926, 50357, 260728, 1372436, 7321982, 39504181, 215168221, 1181540841, 6534058589, 36357935615, 203414689462, 1143589234086, 6457159029573, 36602333187792, 208214459462774, 1188252476400972, 6801133579291811, 39032172166792887 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A free pure symmetric multifunction f in EPSM is either (case 1) a positive integer, or (case 2) an expression of the form h[g_1, ..., g_k] where k > 0, h is in EPSM, each of the g_i for i = 1, ..., k is in EPSM, and for i < j we have g_i <= g_j under a canonical total ordering of EPSM, such as the Mathematica ordering of expressions. LINKS Andrew Howroyd, Table of n, a(n) for n = 0..200 EXAMPLE The a(4) = 22 free pure symmetric multifunctions:   1[1[1[1]]]  1[1[2]]  1[3]  2[2]  4   1[1[1][1]]  1[2[1]]  3[1]   1[1][1[1]]  2[1[1]]   1[1[1]][1]  1[1][2]   1[1][1][1]  1[2][1]   1[1[1,1]]   2[1][1]   1[1,1[1]]   1[1,2]   1[1][1,1]   2[1,1]   1[1,1][1]   1[1,1,1] MATHEMATICA sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; exprUsing[m_]:=exprUsing[m]=If[Length[m]==0, {{}}, If[Length[m]==1, {First[m]}, Join@@Cases[Union[Table[PR[m[[s]], m[[Complement[Range[Length[m]], s]]]], {s, Take[Subsets[Range[Length[m]]], {2, -2}]}]], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{exprUsing[h], Union[Sort/@Tuples[exprUsing/@p]]}], {p, mps[g]}]]]]; Table[Sum[Length[exprUsing[y]], {y, IntegerPartitions[n]}], {n, 0, 6}] PROG (PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} seq(n)={my(v=[]); for(n=1, n, my(t=EulerT(v)); v=concat(v, 1 + sum(k=1, n-1, v[k]*t[n-k]))); concat([1], v)} \\ Andrew Howroyd, Aug 28 2018 CROSSREFS Cf. A001003, A052893, A053492, A277996, A279944, A280000. Cf. A317653, A317654, A317655, A317656, A317658. Sequence in context: A229741 A261518 A185349 * A150274 A109317 A109153 Adjacent sequences:  A317649 A317650 A317651 * A317653 A317654 A317655 KEYWORD nonn AUTHOR Gus Wiseman, Aug 03 2018 EXTENSIONS Terms a(12) and beyond from Andrew Howroyd, Aug 28 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 08:13 EST 2020. Contains 338868 sequences. (Running on oeis4.)