login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317404 a(n) = 3*n*(2^n - 1). 4
0, 3, 18, 63, 180, 465, 1134, 2667, 6120, 13797, 30690, 67551, 147420, 319449, 688086, 1474515, 3145680, 6684621, 14155722, 29884359, 62914500, 132120513, 276823998, 578813883, 1207959480, 2516582325, 5234491314, 10871635887, 22548578220, 46707769257, 96636764070 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Derivative of Fermat-Lucas polynomials evaluated at x=1.

LINKS

Table of n, a(n) for n=0..30.

Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.

R. Flórez, R. Higuita, and A. Mukherjee, The Star of David and Other Patterns in Hosoya Polynomial Triangles, Journal of Integer Sequences, Vol. 21 (2018), Article 18.4.6.

R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.

R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.

Eric Weisstein's World of Mathematics, Fermat-Lucas Polynomial

Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4)

FORMULA

a(n) = 3*A066524(n). - Andrew Howroyd, Jul 27 2018

From Michael De Vlieger, Jul 27 2018: (Start)

G.f.: (-3*(-1 + 2*x^2))/(1 - 3*x + 2*x^2)^2.

a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4).

(End)

EXAMPLE

a(1) = 3 because the first Fermat-Lucas polynomial is 3*x, which has derivative 3.

a(2) = 18 because the second Fermat-Lucas polynomial is 9*x^2 - 4, which has derivative 18*x.

MATHEMATICA

CoefficientList[Series[(-3 (-x + 2 x^3))/(1-3 x + 2 x^2)^2, {x, 0, 29}], x] (* or *)

LinearRecurrence[{6, -13, 12, -4}, {0, 3, 18, 63, 180}, 31] (* or *)

Join[{0}, Array[3 # (2^# - 1) &, 30]] (* Michael De Vlieger, Jul 27 2018; amended for a(0) by Georg Fischer, Apr 03 2019*)

PROG

(PARI) x='x+O('x^31); concat(0, Vec(3*(1 - 2*x^2)/((1 - x)^2*(1 - 2*x)^2))) \\ Andrew Howroyd, Jul 27 2018; amended for a(0) by Georg Fischer, Apr 03 2019

(PARI) a(n) = 3*n*(2^n - 1); \\ Andrew Howroyd, Jul 27 2018

CROSSREFS

Cf. A066524.

Sequence in context: A000648 A235988 A253942 * A110689 A027333 A026576

Adjacent sequences:  A317401 A317402 A317403 * A317405 A317406 A317407

KEYWORD

nonn

AUTHOR

Rigoberto Florez, Jul 27 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)