login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A317403 a(n)=(-1)^((n-2)*(n-1)/2)*2^(n-1)*n^(n-3). 1
1, 1, -4, -32, 400, 6912, -153664, -4194304, 136048896, 5120000000, -219503494144, -10567230160896, 564668382613504, 33174037869887488, -2125764000000000000, -147573952589676412928, 11034809241396899282944, 884295678882933431599104, -75613185918270483380568064 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Discriminant of Fibonacci polynomials.

Fibonacci polynomials are defined as F(0)=0, F(1)=1 and F(n)=x*F(n-1)+F(n-2) for n>1. Coefficients are given in triangle A168561 with offset 1.

LINKS

Table of n, a(n) for n=1..19.

Rigoberto Flórez, Robinson Higuita, and Alexander Ramírez, The resultant, the discriminant, and the derivative of generalized Fibonacci polynomials, arXiv:1808.01264 [math.NT], 2018.

Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Star of David and other patterns in the Hosoya-like polynomials triangles, 2018.

R. Flórez, R. Higuita and A. Mukherjees, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.

R. Flórez, N. McAnally, and A. Mukherjees, Identities for the generalized Fibonacci polynomial, Integers, 18B (2018), Paper No. A2.

Eric Weisstein's World of Mathematics, Discriminant

Eric Weisstein's World of Mathematics, Fibonacci Polynomial

MATHEMATICA

Array[(-1)^((#-2)*(#-1)/2)*2^(#-1)*#^(#-3)&, 20]

PROG

(PARI) concat([1], [poldisc(p) | p<-Vec(x/(1-x^2-y*x) - x + O(x^20))]) \\ Andrew Howroyd, Aug 26 2018

(MAGMA) [(-1)^((n-2)*(n-1) div 2)*2^(n-1)*n^(n-3): n in [1..20]]; // Vincenzo Librandi, Aug 27 2018

CROSSREFS

Cf. A006645, A001629, A001871, A006645, A007701, A045618, A045925, A093967, A168561, A193678, A317404, A317405, A317408, A317451, A318184, A318197.

Essentially the same as A127670.

Sequence in context: A113131 A195762 A127670 * A243468 A317677 A191459

Adjacent sequences:  A317400 A317401 A317402 * A317404 A317405 A317406

KEYWORD

sign

AUTHOR

Rigoberto Florez, Aug 26 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 09:06 EST 2019. Contains 330020 sequences. (Running on oeis4.)