|
|
A110689
|
|
Expansion of (2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)).
|
|
3
|
|
|
1, 3, -18, 63, -207, 696, -2415, 8565, -30714, 110583, -398439, 1435152, -5167083, 18598065, -66931314, 240862563, -866772819, 3119198160, -11224913079, 40394716341, -145367356794, 523129840335, -1882574375679, 6774773362320, -24380205972915
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (-7,-17,-20,-12,-6).
|
|
MAPLE
|
seriestolist(series((2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4basekforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: default; Fortype is set to: 1A.
|
|
MATHEMATICA
|
CoefficientList[Series[(2*x + 1)*(4*x^2 + 8*x + 1)/((3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 2017 *)
|
|
PROG
|
(PARI) Vec((2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
|
|
CROSSREFS
|
Cf. A110687, A110688, A110679.
Sequence in context: A235988 A253942 A317404 * A027333 A026576 A048899
Adjacent sequences: A110686 A110687 A110688 * A110690 A110691 A110692
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Creighton Dement, Aug 02 2005
|
|
STATUS
|
approved
|
|
|
|