login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110689 Expansion of (2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)). 3
1, 3, -18, 63, -207, 696, -2415, 8565, -30714, 110583, -398439, 1435152, -5167083, 18598065, -66931314, 240862563, -866772819, 3119198160, -11224913079, 40394716341, -145367356794, 523129840335, -1882574375679, 6774773362320, -24380205972915 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (-7,-17,-20,-12,-6).

MAPLE

seriestolist(series((2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4basekforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: default; Fortype is set to: 1A.

MATHEMATICA

CoefficientList[Series[(2*x + 1)*(4*x^2 + 8*x + 1)/((3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 2017 *)

PROG

(PARI) Vec((2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Cf. A110687, A110688, A110679.

Sequence in context: A000648 A235988 A253942 * A027333 A026576 A048899

Adjacent sequences:  A110686 A110687 A110688 * A110690 A110691 A110692

KEYWORD

sign,easy

AUTHOR

Creighton Dement, Aug 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 08:46 EST 2017. Contains 294962 sequences.