login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110687 Expansion of -(7*x^2+3*x-1)*(2*x^2+2*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)). 3
1, -8, 28, -100, 358, -1276, 4558, -16342, 58732, -211306, 760498, -2737168, 9851098, -35452510, 127584124, -459135130, 1652275834, -5945992576, 21397667026, -77003195254, 277109379628, -997226422690, 3588693361378, -12914539595584, 46475225095450 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

MAPLE

seriestolist(series(-(7*x^2+3*x-1)*(2*x^2+2*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0, 25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4basekforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: default; Fortype is set to: 1A.

MATHEMATICA

CoefficientList[Series[-(7*x^2 + 3*x - 1)*(2*x^2 + 2*x + 1)/((3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 2017 *)

PROG

(PARI) Vec(-(7*x^2+3*x-1)*(2*x^2+2*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

CROSSREFS

Cf. A110688, A110689, A110679.

Sequence in context: A095857 A184606 A054114 * A153365 A220710 A260935

Adjacent sequences:  A110684 A110685 A110686 * A110688 A110689 A110690

KEYWORD

sign,easy

AUTHOR

Creighton Dement, Aug 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.