login
A317171
a(n) = n! * [x^n] 1/(1 + n*log(1 - x)).
4
1, 1, 10, 222, 8824, 553870, 50545008, 6328330344, 1041597412224, 218138133235680, 56650689388344000, 17868469522986145536, 6728682216722958185472, 2981868816113406609186576, 1536217706761623823662025728, 910442461680276910819097616000, 615053979239579281793375485526016
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} |Stirling1(n,k)|*n^k*k!.
a(n) ~ sqrt(2*Pi) * n^(2*n + 1/2) / exp(n - 1/2). - Vaclav Kotesovec, Jul 23 2018
MATHEMATICA
Table[n! SeriesCoefficient[1/(1 + n Log[1 - x]), {x, 0, n}], {n, 0, 16}]
Join[{1}, Table[Sum[Abs[StirlingS1[n, k]] n^k k!, {k, n}], {n, 16}]]
CROSSREFS
Main diagonal of A320079.
Sequence in context: A210137 A064333 A223817 * A229256 A342601 A361149
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 23 2018
STATUS
approved