OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A001006(k).
MAPLE
a:=series(BesselI(1, 2*log(1 - x))/((1 - x)*log(1 - x)), x=0, 23): seq(n!*coeff(a, x, n), n=0..22); # Paolo P. Lava, Mar 26 2019
MATHEMATICA
nmax = 22; CoefficientList[Series[BesselI[1, 2 Log[1 - x]]/((1 - x) Log[1 - x]), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4], {k, 0, n}], {n, 0, 22}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 23 2018
STATUS
approved