login
A088500
Expansion of e.g.f. 1/(1+2*log(1-x)).
19
1, 2, 10, 76, 772, 9808, 149552, 2660544, 54093696, 1237306560, 31446049728, 879119219328, 26811313164672, 885830291432448, 31518653868782592, 1201567079771092992, 48860409899753588736, 2111033523652100407296
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} |Stirling1(n, k)|*k!*2^k.
a(n) ~ n! * exp(n/2) / (2 * (exp(1/2)-1)^(n+1)). - Vaclav Kotesovec, May 03 2015
a(0) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n,k) * (n-k-1)! * a(k). - Ilya Gutkovskiy, Apr 26 2021
MATHEMATICA
CoefficientList[Series[1/(1+2*Log[1-x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, May 03 2015 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(1/(1+2*log(1-x)))) \\ Michel Marcus, Apr 26 2021
CROSSREFS
Sequence in context: A307524 A066223 A355110 * A295929 A195136 A294573
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Nov 12 2003
STATUS
approved