The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A317111 Number of permutations of [n] in which the length of every increasing run is 0 or 1 (mod 4). 13
 1, 1, 1, 1, 2, 10, 50, 210, 840, 4200, 29400, 231000, 1755600, 13213200, 109309200, 1051050000, 11099088000, 120071952000, 1320791472000, 15317750448000, 192286654560000, 2577944809440000, 35885904294240000, 513695427204960000, 7641940962015360000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Similarly, 1/(1 - x + x^2/2! - ... - x^(2m-1)/(2m-1)!) is the e.g.f. for permutations in which every increasing run has length 0 or 1 (mod 2m). LINKS G. C. Greubel, Table of n, a(n) for n = 0..485 Ira M. Gessel, Reciprocals of exponential polynomials and permutation enumeration, arXiv:1807.09290 [math.CO], 2018. FORMULA E.g.f.: 1/(1 - x + x^2/2! - x^3/3!). EXAMPLE For n=4 the a(4)=2 permutations are 4321 and 1234. MAPLE gser:=series(1/(1-x+x^2/2!-x^3/3!), x, 21): seq(n!*coeff(gser, x, n), n=0..20); MATHEMATICA With[{nmax = 25}, CoefficientList[Series[1/(1 -x +x^2/2! -x^3/3!), {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Nov 30 2018 *) PROG (PARI) my(x='x+O('x^25)); Vec(serlaplace(1/(1 -x +x^2/2 -x^3/6))) \\ G. C. Greubel, Nov 30 2018 (MAGMA) m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(1-x+x^2/2-x^3/6) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Nov 30 2018 (Sage) f= 1/(1 -x +x^2/2 -x^3/6) g=f.taylor(x, 0, 13) L=g.coefficients() coeffs={c[1]:c[0]*factorial(c[1]) for c in L} coeffs  # G. C. Greubel, Nov 30 2018 CROSSREFS Cf. A097592, A097597. Sequence in context: A219662 A268108 A143147 * A218778 A320521 A180266 Adjacent sequences:  A317108 A317109 A317110 * A317112 A317113 A317114 KEYWORD easy,nonn AUTHOR Ira M. Gessel, Jul 21 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 02:46 EST 2020. Contains 331291 sequences. (Running on oeis4.)