login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317095
a(n) = 40*n.
1
0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1160, 1200, 1240, 1280, 1320, 1360, 1400, 1440, 1480, 1520, 1560, 1600, 1640, 1680, 1720, 1760, 1800, 1840, 1880
OFFSET
0,2
COMMENTS
a(n) is equal to the freshwater zone below sea level for a water table of elevation n above sea level in a simplified freshwater-saltwater interface in a coastal water-table aquifer (cf. Barlow, 2003, p. 14, eq. (2) and p. 15, Fig. B-1 and B-2).
From Bruno Berselli, Sep 10 2018: (Start)
After 0, subsequence of A065607: 1/a(n)^2 + 1/(30*n)^2 = 1/(24*n)^2, with n > 0 and a(n) > 30*n.
Also, all positive terms belong to A049094: 2^(40*n)-1 = 1024^(4*n)-1 and (25*41-1)^(4*n)-1 is divisible by 25. (End)
FORMULA
O.g.f.: 40*x/(1 - x)^2.
E.g.f.: 40*x*exp(x). - Bruno Berselli, Sep 10 2018
a(n) = 2*a(n - 1) - a(n - 2) for n > 1. - Stefano Spezia, Sep 07 2018
a(n) = A008586(A008592(n)) = 4*A008592(n).
a(n) = A010692(n)*A008586(n) = 10*A008586(n).
a(n) = A008602(A005843(n)) = 20*A005843(n).
a(n) = A007395(n)*A008602(n) = 2*A008602(n).
MATHEMATICA
Table[40 n, {n, 0, 50}] (* or *)
LinearRecurrence[{2, -1}, {0, 40}, 50] (* or *)
CoefficientList[Series[40*x/(1 - x)^2, {x, 0, 50}], x] (* Stefano Spezia, Sep 07 2018 *)
PROG
(PARI) a(n) = 40*n
(PARI) a(n) = if(n==0, 0, if(n==1, 40, 2*a(n-1)-a(n-2)))
(PARI) concat(0, Vec(40*x/(1-x)^2 + O(x^60)))
CROSSREFS
Row n = 40 of A004247. Intersection of A008587 and A008590.
After 0, subsequence of A005101.
Sequence in context: A253692 A253699 A037975 * A039468 A181458 A069070
KEYWORD
nonn,easy
AUTHOR
Felix Fröhlich, Sep 07 2018
STATUS
approved