login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316657 For any n >= 0 with base-5 expansion Sum_{k=0..w} d_k * 5^k, let f(n) = Sum_{k=0..w} [d_k > 0] * (2 + i)^k * i^(d_k - 1) (where [] is an Iverson bracket and i denotes the imaginary unit); a(n) equals the real part of f(n). 8
0, 1, 0, -1, 0, 2, 3, 2, 1, 2, -1, 0, -1, -2, -1, -2, -1, -2, -3, -2, 1, 2, 1, 0, 1, 3, 4, 3, 2, 3, 5, 6, 5, 4, 5, 2, 3, 2, 1, 2, 1, 2, 1, 0, 1, 4, 5, 4, 3, 4, -4, -3, -4, -5, -4, -2, -1, -2, -3, -2, -5, -4, -5, -6, -5, -6, -5, -6, -7, -6, -3, -2, -3, -4, -3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

See A316658 for the imaginary part of f.

See A316707 for the square of the modulus of f.

The function f has nice fractal features (see scatterplot in Links section).

It appears that f defines a bijection from the nonnegative integers to the Gaussian integers.

LINKS

Rémy Sigrist, Table of n, a(n) for n = 0..15624

Rémy Sigrist, Colored scatterplot of (a(n), A316658(n)) for n=0..5^8-1 (where the hue is function of n)

Wikipedia, Gaussian integer

FORMULA

a(5^n) = A139011(n) for any n >= 0.

a(3 * 5^n) = -A139011(n) for any n >= 0.

PROG

(PARI) a(n) = my (d=Vecrev(digits(n, 5)), z=sum(i=1, #d, if (d[i], (2+I)^(i-1) * I^(d[i]-1), 0))); real(z)

CROSSREFS

Cf. A139011, A316658, A316707.

Sequence in context: A219539 A154556 A260228 * A277914 A126626 A137927

Adjacent sequences:  A316654 A316655 A316656 * A316658 A316659 A316660

KEYWORD

sign,base

AUTHOR

Rémy Sigrist, Jul 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 01:56 EDT 2020. Contains 333153 sequences. (Running on oeis4.)