This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A139011 Real part of (2 + i)^n, where i = sqrt(-1). 7
 1, 2, 3, 2, -7, -38, -117, -278, -527, -718, -237, 2642, 11753, 33802, 76443, 136762, 164833, -24478, -922077, -3565918, -9653287, -20783558, -34867797, -35553398, 32125393, 306268562, 1064447283, 2726446322, 5583548873, 8701963882 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Imaginary part of (2 + i)^n gives A099456. (a(n))^2 + (A099456(n))^2 = 5^n. Example: (a(5))^2 + (A099456(5))^2 = 3125 = 5^5 = (-38)^2 + 41^2 = 1444 + 1681. Binomial transform of A146559, second binomial transform of A056594. - Philippe Deléham, Dec 02 2008 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..2862 (first 201 terms from Vincenzo Librandi) Beata Bajorska-Harapińska, Barbara Smoleń, Roman Wituła, On Quaternion Equivalents for Quasi-Fibonacci Numbers, Shortly Quaternaccis, Advances in Applied Clifford Algebras (2019) Vol. 29, 54. Index entries for linear recurrences with constant coefficients, signature (4,-5). FORMULA Real part of (2 + i)^n, i^2 = -1. Term (1,1) of matrix [2,-1; 1,2]^n. Irrespective of signs, odd indexed terms of A006496 interleaved with even indexed signs of A006495. O.g.f.: (1-2x) /(1-4x+5x^2). a(n)=4*a(n-1)-5*a(n-2) = 2*A099456(n-1)-5*A099456(n-2). - R. J. Mathar, Apr 06 2008 a(n) = (1/2)*((2-i)^n+(2+i)^n) where i=sqrt(-1). - Vim Wenders, Apr 12 2008; Paolo P. Lava, Jul 14 2008 E.g.f.: exp(x)^2*cos(x). - Zerinvary Lajos, Apr 06 2009 a(-n) = a(n) / 5^n. - Michael Somos, Dec 26 2010 a(n) = Sum_{k, 0<=k<=n)A098158(n,k)*2^(2k-n)*(-1)^(n-k). - Philippe Deléham, Dec 02 2008 2*a(n) - a(n+1) = A099456(n-1) for n>0. First differences are (up to sign) A118444. - Paul Curtz, Apr 25 2011 a(n) = Sum_{k=0..n} A201730(n,k)*(-2)^k. - Philippe Deléham, Dec 06 2011 EXAMPLE 1 + 2*x + 3*x^2 + 2*x^3 - 7*x^4 - 38*x^5 - 117*x^6 - 278*x^7 - 527*x^8 + ... a(5) = -38 since (2 + i)^5 = (-38 + 41*i). a(5) = -38 since [2,-1; 1,2]^5 = [ -38,-41; 41,-38], where 41 = A099456(5). a(5) = -38 = A006496(5). MAPLE restart: G(x):=exp(x)^2*cos(x): f[0]:=G(x): for n from 1 to 54 do f[n]:=diff(f[n-1], x) od: x:=0: seq(f[n], n=1..29 ); # Zerinvary Lajos, Apr 06 2009 PROG (Sage) [lucas_number2(n, 4, 5)/2 for n in xrange(0, 31)] # Zerinvary Lajos, Jul 08 2008 (PARI) a(n) = real((2 + I)^n) /* Michael Somos, Dec 26 2009 */ (PARI) Vec((1 - 2*x) / (1 - 4*x + 5*x^2) + O(x^30)) \\ Colin Barker, Sep 22 2017 (MAGMA) [ Integers()!Real((2+Sqrt(-1))^n): n in [0..29] ];  // Bruno Berselli, Apr 26 2011 CROSSREFS Cf. A099456, A006495, A006496, A056594, A146559. Sequence in context: A014784 A048601 A008317 * A063708 A096488 A011280 Adjacent sequences:  A139008 A139009 A139010 * A139012 A139013 A139014 KEYWORD sign,easy AUTHOR Gary W. Adamson, Apr 05 2008 EXTENSIONS Cross-reference corrected by Franklin T. Adams-Watters, Jan 06 2009 Added a(0)=1 by Michael Somos, Dec 26 2010 Edited by Franklin T. Adams-Watters, Apr 10 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 20:23 EDT 2019. Contains 328103 sequences. (Running on oeis4.)