login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316659 Irregular triangle read by rows: row n consists of the coefficients in the expansion of the polynomial x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), where v = 3 + 2*x and w = sqrt(5 + 4*x). 3
0, 0, 0, 1, 0, 1, 2, 1, 0, 5, 8, 3, 0, 16, 30, 16, 2, 0, 45, 104, 81, 24, 2, 0, 121, 340, 356, 170, 35, 2, 0, 320, 1068, 1411, 932, 315, 48, 2, 0, 841, 3262, 5209, 4396, 2079, 532, 63, 2, 0, 2205, 9760, 18281, 18784, 11440, 4144, 840, 80, 2, 0, 5776, 28746 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

The triangle is related to the Kauffman bracket polynomial for the Turk's Head Knot ((3,n)-torus knot). Column 1 matches the determinant of the Turk’s Head Knots THK(3,k) A004146.

LINKS

Table of n, a(n) for n=0..59.

Louis H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc., Vol. 318 (1990), 417-471.

Seong Ju Kim, R. Stees, L. Taalman, Sequences of Spiral Knot Determinants, Journal of Integer Sequences, Vol. 19 (2016), #16.1.4.

Alexander Stoimenow, Square numbers, spanning trees and invariants of achiral knots, Communications in Analysis and Geometry, Vol. 13 (2005), 591-631.

FORMULA

T(n,1) = A004146(n).

T(n,2) = A122076(n,1) = A099920(2*n-1).

G.f.: (x^3 - 2*x)/(1 - y) + (2*x - 3*x*y - 2*x^2*y)/(1 - 3*y - 2*x*y + y^2 + 2*x*y^2 + x^2*y^2).

EXAMPLE

The triangle T(n,k) begins:

n\k: 0      1      2       3       4       5       6      7      8    9  10 11

0:   0      0      0       1

1:   0      1      2       1

2:   0      5      8       3

3:   0     16     30      16       2

4:   0     45    104      81      24       2

5:   0    121    340     356     170      35       2

6:   0    320   1068    1411     932     315      48      2

7:   0    841   3262    5209    4396    2079     532     63      2

8:   0   2205   9760   18281   18784   11440    4144    840     80    2

9:   0   5776  28746   61786   74838   55809   26226   7602   1260   99   2

10:  0  15125  83620  202841  282980  249815  144488  54690  13080 1815 120  2

...

MATHEMATICA

v = 3 + 2*x; w = Sqrt[5 + 4*x];

row[n_] := CoefficientList[x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n), x];

Array[row, 15, 0] // Flatten

PROG

(Maxima)

v : 3 + 2*x$ w : sqrt(5 + 4*x)$

p(n, x) := expand(x*(x^2 - 2) + x*(((v - w)/2)^n + ((v + w)/2)^n))$

for n:0 thru 15 do print(makelist(ratcoef(p(n, x), x, k), k, 0, max(3, n + 1)));

CROSSREFS

Row sums: A000302 (Powers of 4).

Row 1: row 1 of A300184, A300192 and row 0 of A300454.

Row 2: row 2 of A300454.

Cf. A137396, A299989, A300453.

Sequence in context: A140589 A331955 A185209 * A241218 A266904 A299198

Adjacent sequences:  A316656 A316657 A316658 * A316660 A316661 A316662

KEYWORD

nonn,tabf

AUTHOR

Franck Maminirina Ramaharo, Jul 09 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 16:30 EDT 2020. Contains 334852 sequences. (Running on oeis4.)