login
A308284
G.f. A(x) satisfies: A(x) = (1 + x) * A(x^3)*A(x^5)*A(x^7)* ... *A(x^(2*k-1))* ...
2
1, 1, 0, 1, 1, 1, 1, 1, 2, 3, 3, 2, 4, 4, 4, 7, 8, 7, 9, 10, 11, 15, 15, 16, 23, 26, 24, 32, 36, 37, 47, 51, 54, 66, 71, 79, 99, 105, 108, 132, 148, 156, 184, 203, 219, 262, 282, 297, 358, 390, 417, 484, 531, 569, 654, 718, 773, 888, 962, 1037, 1198, 1303, 1390, 1592, 1740, 1868
OFFSET
0,9
LINKS
FORMULA
G.f.: Product_{k>=1} (1 + x^(2*k-1))^A074206(2*k-1).
MATHEMATICA
terms = 65; A[_] = 1; Do[A[x_] = (1 + x) Product[A[x^(2 k - 1)], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 18 2019
STATUS
approved