login
G.f. A(x) satisfies: A(x) = (1 + x) * A(x^3)*A(x^5)*A(x^7)* ... *A(x^(2*k-1))* ...
2

%I #7 May 29 2019 14:12:30

%S 1,1,0,1,1,1,1,1,2,3,3,2,4,4,4,7,8,7,9,10,11,15,15,16,23,26,24,32,36,

%T 37,47,51,54,66,71,79,99,105,108,132,148,156,184,203,219,262,282,297,

%U 358,390,417,484,531,569,654,718,773,888,962,1037,1198,1303,1390,1592,1740,1868

%N G.f. A(x) satisfies: A(x) = (1 + x) * A(x^3)*A(x^5)*A(x^7)* ... *A(x^(2*k-1))* ...

%H Vaclav Kotesovec, <a href="/A308284/b308284.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{k>=1} (1 + x^(2*k-1))^A074206(2*k-1).

%t terms = 65; A[_] = 1; Do[A[x_] = (1 + x) Product[A[x^(2 k - 1)], {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

%Y Cf. A074206, A129373, A308272, A308283.

%K nonn

%O 0,9

%A _Ilya Gutkovskiy_, May 18 2019