This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307202 Coordination sequence for trivalent node of type alpha' in the first Moore pentagonal tiling. 7
 1, 3, 9, 15, 21, 24, 30, 42, 42, 45, 51, 69, 63, 66, 72, 96, 84, 87, 93, 123, 105, 108, 114, 150, 126, 129, 135, 177, 147, 150, 156, 204, 168, 171, 177, 231, 189, 192, 198, 258, 210, 213, 219, 285, 231, 234, 240, 312, 252, 255, 261, 339, 273, 276, 282, 366 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS There are six orbits on nodes, and six distinct coordination sequences, which are A307201 (nodes of type alpha), A307202 (alpha'), A307203 (alpha''), A307270 (alpha'''), A307204 (alpha''''), and A307206 (beta). The group is p3m1. - Davide M. Proserpio, Apr 01 2019 REFERENCES Herbert C. Moore, U.S. Patent 928,320, Patented July 20 1909. LINKS Rémy Sigrist, Table of n, a(n) for n = 0..1000 Davide M. Proserpio, Another drawing of the first Moore tiling {Labels: V1 = alpha'''', V2 = alpha''', V3 = alpha'', V4 = beta, V5 = alpha', V6 = alpha] Rémy Sigrist, Illustration of first terms Rémy Sigrist, PARI program for A307202 N. J. A. Sloane, The first Moore tiling [Constructed by copy-and-paste from the illustration in the patent] N. J. A. Sloane, Fundamental cell FORMULA For n >= 1, a(n+4) = a(n) + [21,21,21,27] according as n == [0,1,2,3] mod 4. - Chaim Goodman-Strauss, Mar 31 2019 Conjectures from Colin Barker, Apr 03 2019: (Start) G.f.: (1 + 3*x + 9*x^2 + 15*x^3 + 19*x^4 + 18*x^5 + 12*x^6 + 12*x^7 + x^8) / ((1 - x)^2*(1 + x)^2*(1 + x^2)^2). a(n) = 2*a(n-4) - a(n-8) for n>8. (End) PROG (PARI) See Links section. CROSSREFS Cf. A307201-A307205, A307270, A307271-A307276. Sequence in context: A117105 A261190 A282031 * A162488 A324298 A194041 Adjacent sequences:  A307199 A307200 A307201 * A307203 A307204 A307205 KEYWORD nonn AUTHOR N. J. A. Sloane, Mar 30 2019 EXTENSIONS Terms a(7)-a(20) from Davide M. Proserpio using ToposPro, Apr 01 2019 More terms from Rémy Sigrist, Apr 02 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 04:46 EDT 2019. Contains 323579 sequences. (Running on oeis4.)