OFFSET
0,2
COMMENTS
REFERENCES
Herbert C. Moore, U.S. Patent 928,320, Patented July 20 1909.
LINKS
Rémy Sigrist, Table of n, a(n) for n = 0..1000
Davide M. Proserpio, Another drawing of the first Moore tiling {Labels: V1 = alpha'''', V2 = alpha''', V3 = alpha'', V4 = beta, V5 = alpha', V6 = alpha]
Rémy Sigrist, Illustration of first terms
Rémy Sigrist, PARI program for A307203
N. J. A. Sloane, The first Moore tiling [Constructed by copy-and-paste from the illustration in the patent]
N. J. A. Sloane, Fundamental cell
FORMULA
For n >= 10, a(n+4) = a(n) + [23,23,22,22] according as n == [0,1,2,3] mod 4. - Chaim Goodman-Strauss, Mar 31 2019
Conjectures from Colin Barker, Apr 03 2019: (Start)
G.f.: (1 + 2*x + 5*x^2 + 5*x^3 + 7*x^4 + 8*x^5 + 4*x^6 + 8*x^7 + 3*x^8 + 4*x^9 + 2*x^10 - x^12 + x^13 - 4*x^14 + 2*x^15 - 2*x^16) / ((1 - x)^2*(1 + x)*(1 + x^2)^2).
a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + a(n-6) - a(n-7) for n>16.
(End)
PROG
(PARI) See Links section.
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 30 2019
EXTENSIONS
Terms a(7)-a(20) from Davide M. Proserpio using ToposPro, Apr 01 2019
More terms from Rémy Sigrist, Apr 02 2019
STATUS
approved