OFFSET
0,1
COMMENTS
From Bruno Berselli, Jun 15 2018: (Start)
a(0) = 2*7 and a(40) = 2*232110255958477539427146457 are semiprimes. For which values of n > 40 is a(n) semiprime?
For odd n, a(n) is divisible by 2*3.
For n == 3 (mod 4), a(n) is divisible by 2*3*5.
For n == 0 or 5 (mod 6), a(n) is divisible by 2*7.
For n == 2 or 4 (mod 5), a(n) is divisible by 2*11.
For n == 1 or 11 (mod 12), a(n) is divisible by 2*3*13.
For n == 15 (mod 16), a(n) is divisible by 2*3*5*17^2, etc.
If a(n) is divisible by 37 then it is also divisible by 3*5*7*13*19*73. (End)
LINKS
Takao Komatsu, On poly-Euler numbers of the second kind, arXiv:1806.05515 [math.NT], 2018, page 11 (Lemma 3.4).
Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
FORMULA
G.f.: 2*(7 + 47*x - 12*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)).
a(n) = 10*a(n-1) - 35*a(n-2) + 50*a(n-3) - 24*a(n-4).
MATHEMATICA
Table[384 4^n - 576 3^n + 220 2^n - 14, {n, 0, 30}]
PROG
(Magma) [384*4^n-576*3^n+220*2^n-14: n in [0..30]];
(PARI) a(n) = 384*4^n - 576*3^n + 220*2^n - 14; \\ Michel Marcus, Jul 03 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jun 15 2018
STATUS
approved