login
A305863
a(n) = 6144*5^n - 12288*4^n + 7616*3^n - 1472*2^n + 41.
2
41, 1513, 19689, 175465, 1287657, 8420713, 51126249, 295141225, 1644285417, 8927926633, 47563308009, 249806529385, 1297882995177, 6687496584553, 34237868091369, 174415093507945, 885051189224937, 4477377106010473, 22596025278436329, 113818651291052905
OFFSET
0,1
LINKS
Takao Komatsu, On poly-Euler numbers of the second kind, arXiv:1806.05515 [math.NT], 2018, page 11 (Lemma 3.4).
FORMULA
G.f.: (41 + 898*x + 479*x^2 - 490*x^3 + 56*x^4)/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)*(1 - 5*x)).
a(n) = 15*a(n-1) - 85*a(n-2) + 225*a(n-3) - 274*a(n-4) + 120*a(n-5) for n>5.
MATHEMATICA
Table[6144 5^n - 12288 4^n + 7616 3^n - 1472 2^n + 41, {n, 0, 30}]
PROG
(Magma) [6144*5^n-12288*4^n+7616*3^n-1472*2^n+41: n in [0..20]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 04 2018
STATUS
approved