OFFSET
0,2
COMMENTS
More generally, for m>=2, a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) is asymptotic to 1/2*m/(m-1)*(m^m/(m-1)^(m-1))^n * (1 + (2*m-4)/(3*sqrt(Pi*n*m*(m-1)/2))), extended by Vaclav Kotesovec, May 25 2020
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..802
Rui Duarte and António Guedes de Oliveira, Short note on the convolution of binomial coefficients, arXiv:1302.2100 [math.CO], 2013.
D. Merlini, R. Sprugnoli, and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
FORMULA
a(n) = (7/12)*(823543/46656)^n*(1+c/sqrt(n)+o(n^-1/2)) where c=0.41...
c = 10/(3*sqrt(21*Pi)) = 0.410387535383... - Vaclav Kotesovec, May 25 2020
From Rui Duarte and António Guedes de Oliveira, Feb 17 2013: (Start)
a(n) = Sum_{k=0..n} binomial(7*k+x,k)*binomial(7*(n-k)-x,n-k) for any real x.
a(n) = Sum_{k=0..n} 6^(n-k)*binomial(7*n+1,k).
a(n) = Sum_{k=0..n} 7^(n-k)*binomial(6*n+k,k). (End)
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Jan 26 2003
STATUS
approved