login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305695
Triangle T(n,k) read by rows: fibonomial coefficients sums triangle.
1
1, 2, 1, 4, 3, 1, 7, 9, 4, 1, 12, 24, 19, 6, 1, 20, 64, 79, 46, 9, 1, 33, 168, 339, 306, 113, 14, 1, 54, 441, 1431, 2126, 1205, 287, 22, 1, 88, 1155, 6072, 14502, 13581, 4928, 736, 35, 1, 143, 3025, 25707, 99587, 149717, 90013, 20371, 1905, 56, 1
OFFSET
0,2
COMMENTS
The triangle coefficients give sums of Fibonacci powers when multiplied with Lang triangle coefficients and summed (see 2nd formula).
FORMULA
T(n, k) = T(n-1, k) + A010048(n+1, k+1).
Sum_{t=0..n-1} A056588(n-1, n-1-t) * T(k+t, n-1) = Sum_{j=1..k+1} F(j)^n.
EXAMPLE
n\k| 0 1 2 3 4 5 6 7 8 9
---+--------------------------------------------------
0 | 1
1 | 2 1
2 | 4 3 1
3 | 7 9 4 1
4 | 12 24 19 6 1
5 | 20 64 79 46 9 1
6 | 33 168 339 306 113 14 1
7 | 54 441 1431 2126 1205 287 22 1
8 | 88 1155 6072 14502 13581 4928 736 35 1
9 | 143 3025 25707 99587 149717 90013 20371 1905 56 1
PROG
(PARI) f(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j));
T(n, k) = if (n< 0, 0, T(n-1, k) + f(n+1, k+1));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Tony Foster III, Jul 09 2018
EXTENSIONS
More terms from Michel Marcus, Jul 20 2018
STATUS
approved