OFFSET
0,1
COMMENTS
First occurrence of k=3..23: 1, 0, 8, 13, 14, 25, 24, 74, 112, 127, 125, 165, 265, 1265, 2568, 12468, 1002568, 1001002568, 1000001001002568, 1000000001000001001002568, 1001000000001000001001002568.
Since there are no number words consisting of just one or two letters, nor any number words which contain the letters "j", "k" or "z"; the above list is complete.
FORMULA
a(n) <= A005589(n).
EXAMPLE
a(7) = 4 since "seven" has 4 distinct letters. (Cf. A005589(7) = 5.)
MATHEMATICA
f[n_] := Length@ Union@ StringPartition[ StringReplace[ IntegerName[n, "Words"], ", " | " " | "\[Hyphen]" -> ""], 1]; Array[f, 98, 0]
PROG
(Python)
from num2words import num2words
def n2w(n):
map = {ord(c): None for c in "-, "}
return num2words(n).replace(" and", "").translate(map)
def a(n): return len(set(n2w(n)))
print([a(n) for n in range(98)]) # Michael S. Branicky, Apr 03 2021
CROSSREFS
KEYWORD
nonn,word
AUTHOR
Robert G. Wilson v, Apr 29 2018
STATUS
approved