

A180217


a(n) = (nth prime modulo 3) + (nth prime modulo 4).


1



4, 3, 3, 4, 5, 2, 3, 4, 5, 3, 4, 2, 3, 4, 5, 3, 5, 2, 4, 5, 2, 4, 5, 3, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 3, 4, 2, 4, 5, 3, 5, 2, 5, 2, 3, 4, 4, 4, 5, 2, 3, 5, 2, 5, 3, 5, 3, 4, 2, 3, 4, 3, 4, 5, 2, 3, 4, 2, 5, 2, 3, 5, 4, 2, 4, 5, 3, 2, 3, 2, 5, 2, 5, 2, 4, 5, 3, 2, 3, 4, 5, 5, 4, 5, 4, 5, 3, 3, 4, 2, 4, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) = 2 iff prime(n) == 1 (mod 12); a(n) = 2 for prime(n) = 13, 37, 61, 73, 97, 109, ... (A068228).
a(n) = 5 iff prime(n) == 11 (mod 12); a(n) = 5 for prime(n) = 11, 23, 47, 59, 71, 83, ... (A068231).
For n > 2, a(n) = 3 iff prime(n) == 5 (mod 12); a(n) = 3 for prime(n) = 5, 17, 29, 41, 53, 89, ... (A040117).
For n > 2, a(n) = 4 iff prime(n) == 7 (mod 12); a(n) = 4 for prime(n) = 7, 19, 31, 43, 67, 79, ... (A068229).


LINKS

Table of n, a(n) for n=1..102.


MATHEMATICA

Mod[#, 3]+Mod[#, 4]&/@Prime[Range[110]] (* Harvey P. Dale, Nov 09 2011 *)


PROG

(MAGMA) A180217:=func< n  p mod 3 + p mod 4 where p is NthPrime(n) >; [ A180217(n): n in [1..105] ]; // Klaus Brockhaus, Jan 18 2011


CROSSREFS

Equals A039701 + A039702.
Cf. A068228, A068231, A040117, A068229, A039710.
Sequence in context: A048853 A303701 A179845 * A270651 A222635 A222649
Adjacent sequences: A180214 A180215 A180216 * A180218 A180219 A180220


KEYWORD

nonn


AUTHOR

Zak Seidov, Jan 16 2011


STATUS

approved



