The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303285 Number of permutations p of [2n] such that the sequence of ascents and descents of p0 forms a Dyck path. 9
 1, 1, 8, 172, 7296, 518324, 55717312, 8460090160, 1726791794432, 456440969661508, 151770739970889792, 62022635037246022000, 30564038464166725328768, 17876875858414492985045712, 12245573879235563308351042496, 9711714975145772145881269175104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Here p is a permutation of 1,2,3,...,2n, and p0 refers to the string p followed by 0. Also the number of permutations p of [2n] such that the sequence of ascents and descents of 0p forms a Dyck path. a(2) = 8: 1432, 2143, 2431, 3142, 3241, 3421, 4132, 4231. Also the number of permutations p of [2n] that are of odd order and whose M statistic (as defined in the Spiro paper) is equal to n-1. - Sam Spiro, Nov 01 2018 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 S. Spiro, Ballot Permutations, Odd Order Permutations, and a New Permutation Statistic, arXiv:1810.00993 [math.CO], 2018. Wikipedia, Counting lattice paths FORMULA a(n) ~ c * 2^(2*n) * n^(2*n - 1) / exp(2*n), where c = 8.838022110416151362523442920999767406145711133564692... - Vaclav Kotesovec, May 22 2018 a(n) = (1/2)*Sum_{k odd} binomial(2*n,k)*A177042((k-1)/2)*A177042((2n-k-1)/2) for n>0. - Sam Spiro, Nov 01 2018 a(n) = A321280(2n,n-1) for n >= 1. - Alois P. Heinz, Nov 02 2018 EXAMPLE a(0) = 1: the empty permutation. a(1) = 1: 12. a(2) = 8: 1243, 1324, 1342, 1423, 2314, 2341, 2413, 3412. MAPLE b:= proc(u, o, t) option remember; `if`(u+o=0, 1,       `if`(t>0,   add(b(u-j, o+j-1, t-1), j=1..u), 0)+       `if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))     end: a:= n-> b(0, 2*n, 0): seq(a(n), n=0..20); MATHEMATICA b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] + If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]]; a[n_] := b[0, 2n, 0]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 29 2018, from Maple *) PROG (PARI) \\ here b(n) is A177042 b(n)={if(n==0, 1, 2*sum(k=0, n, (-1)^k*binomial(2*n+1, k)*(n-k+1)^(2*n))); } a(n)={if(n==0, 1, sum(k=1, n, binomial(2*n, 2*k-1)*b(k-1)*b(n-k))/2); } \\ Andrew Howroyd, Nov 01 2018 CROSSREFS Bisection (even part) of A303284. Bisection (even part) of A303287. Column k=0 of A316728. Cf. A177042, A180056, A316727, A321280. Sequence in context: A247729 A333460 A221060 * A061492 A263461 A215124 Adjacent sequences:  A303282 A303283 A303284 * A303286 A303287 A303288 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 12:18 EDT 2020. Contains 334681 sequences. (Running on oeis4.)