The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303286 Number of permutations p of [2n+1] such that the sequence of ascents and descents of 0p0 forms a Dyck path. 3
 1, 4, 60, 1974, 114972, 10490392, 1384890104, 250150900354, 59317740001132, 17886770092245360, 6687689652133397064, 3037468107154650475868, 1647659575564603380270360, 1052309674407466474533397824, 781725844087366504901991503920, 668408235613132734111402947167658 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..200 Wikipedia, Counting lattice paths FORMULA a(n) ~ c * 2^(2*n) * n^(2*n) / exp(2*n), where c = 45.0971960423271758887353825240016439879529954831112316... - Vaclav Kotesovec, May 22 2018 EXAMPLE a(1) = 4: 132, 213, 231, 312. MAPLE b:= proc(u, o, t) option remember; `if`(u+o=0, 1,       `if`(t>0,   add(b(u-j, o+j-1, t-1), j=1..u), 0)+       `if`(o+u>t, add(b(u+j-1, o-j, t+1), j=1..o), 0))     end: a:= n-> b(0, 2*n+1, 0): seq(a(n), n=0..20); MATHEMATICA b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, If[t > 0, Sum[b[u - j, o + j - 1, t - 1], {j, 1, u}], 0] + If[o + u > t, Sum[b[u + j - 1, o - j, t + 1], {j, 1, o}], 0]]; a[n_] := b[0, 2*n + 1, 0]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 31 2018, from Maple *) CROSSREFS Bisection (odd part) of A303284. Cf. A180056. Sequence in context: A330069 A211309 A013502 * A322450 A099705 A012488 Adjacent sequences:  A303283 A303284 A303285 * A303287 A303288 A303289 KEYWORD nonn AUTHOR Alois P. Heinz, Apr 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 16:29 EDT 2020. Contains 334748 sequences. (Running on oeis4.)