OFFSET
1,1
COMMENTS
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
M. A. Alekseyev, J. M. Grau, A. M. Oller-Marcén, Computing solutions to the congruence 1^n + 2^n + ... + n^n == p (mod n), Discrete Applied Mathematics 286 (2020), 3-9. Preprint: arXiv:1602.02407 [math.NT], 2016.
MATHEMATICA
Select[Range[3000], PrimeQ[#] && AllTrue[{2, 6, 14, 42, 86, 258, 602, 1806}*# + 1, ! PrimeQ[#1] &] &] (* Amiram Eldar, Aug 09 2020 *)
PROG
(PARI) { is_A302345(p) = !vecmax( apply( x->ispseudoprime(1+x*p), 2*divisors(3*7*43) ) ); }
CROSSREFS
KEYWORD
nonn
AUTHOR
Max Alekseyev, Apr 05 2018
STATUS
approved