login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301932
G.f. A(x) satisfies: A(x) = x*(1 + 3*A(x)*A'(x)) / (1 + A(x)*A'(x)).
4
1, 2, 10, 74, 710, 8322, 115018, 1828962, 32852526, 657188258, 14477811178, 348100068698, 9067809569750, 254354791759298, 7642986480897930, 244923580410697938, 8337728465913016926, 300482221889444825154, 11429089791630856291018, 457542303069698601849194, 19230862148761320966737254, 846710680545018639230252418
OFFSET
1,2
COMMENTS
Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
LINKS
FORMULA
a(n) ~ c * 2^n * n!, where c = 0.181799839377767875340143846... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 74*x^4 + 710*x^5 + 8322*x^6 + 115018*x^7 + 1828962*x^8 + 32852526*x^9 + 657188258*x^10 + ...
such that A = A(x) satisfies: A = x*(1 + 3*A*A')/(1 + A*A').
RELATED SERIES.
A(x)*A'(x) = x + 6*x^2 + 48*x^3 + 470*x^4 + 5448*x^5 + 73374*x^6 + 1132000*x^7 + 19752822*x^8 + 385285080*x^9 + 8311631702*x^10 + ...
PROG
(PARI) {a(n) = my(L=x); for(i=1, n, L = x*(1 + 3*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2018
STATUS
approved