login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A301933 G.f. A(x) satisfies: A(x) = x*(1 + 4*A(x)*A'(x)) / (1 + A(x)*A'(x)). 4
1, 3, 24, 291, 4596, 88230, 1979088, 50570823, 1446341388, 45706515546, 1580322048288, 59318131995822, 2401809350808552, 104347127373249036, 4842030589556434656, 239028273094016840223, 12508863342589554285372, 691783629316556340447570, 40316336264435949765811968 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

a(n = 2^k) is odd for k>=0, and a(n) is even elsewhere (conjecture).

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..400

EXAMPLE

G.f.: A(x) = x + 3*x^2 + 24*x^3 + 291*x^4 + 4596*x^5 + 88230*x^6 + 1979088*x^7 + 50570823*x^8 + 1446341388*x^9 + 45706515546*x^10 + ...

such that A = A(x) satisfies: A = x*(1 + 4*A*A')/(1 + A*A').

Odd coefficients in A(x) seem to occur only for x^(2^k), k>=0.

RELATED SERIES.

A(x)*A'(x) = x + 9*x^2 + 114*x^3 + 1815*x^4 + 34542*x^5 + 763014*x^6 + 19171380*x^7 + 539667387*x^8 + 16817885070*x^9 + 574647250650*x^10 + ...

Odd coefficients in A(x)*A'(x) also seem to occur only for x^(2^k), k>=0.

PROG

(PARI) {a(n) = my(L=x); for(i=1, n, L = x*(1 + 4*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L, n)}

for(n=1, 30, print1(a(n), ", "))

CROSSREFS

Cf. A301930, A301931, A301932.

Sequence in context: A128572 A052592 A059381 * A326001 A292186 A258301

Adjacent sequences:  A301930 A301931 A301932 * A301934 A301935 A301936

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Mar 28 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 21:35 EST 2020. Contains 332006 sequences. (Running on oeis4.)