OFFSET
1,2
COMMENTS
Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
a(n = 2^k) is odd for k>=0, and a(n) is even elsewhere (conjecture).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 1..400
FORMULA
a(n) ~ c * 3^n * n! * n^(1/3), where c = 0.113581779257198505098700336... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 24*x^3 + 291*x^4 + 4596*x^5 + 88230*x^6 + 1979088*x^7 + 50570823*x^8 + 1446341388*x^9 + 45706515546*x^10 + ...
such that A = A(x) satisfies: A = x*(1 + 4*A*A')/(1 + A*A').
Odd coefficients in A(x) seem to occur only for x^(2^k), k>=0.
RELATED SERIES.
A(x)*A'(x) = x + 9*x^2 + 114*x^3 + 1815*x^4 + 34542*x^5 + 763014*x^6 + 19171380*x^7 + 539667387*x^8 + 16817885070*x^9 + 574647250650*x^10 + ...
Odd coefficients in A(x)*A'(x) also seem to occur only for x^(2^k), k>=0.
PROG
(PARI) {a(n) = my(L=x); for(i=1, n, L = x*(1 + 4*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2018
STATUS
approved