login
A301768
Number of ways to choose a strict rooted partition of each part in a constant rooted partition of n.
1
1, 1, 2, 2, 4, 3, 6, 5, 11, 8, 14, 11, 32, 16, 36, 32, 70, 33, 104, 47, 168, 130, 178, 90, 521, 155, 369, 383, 902, 223, 1562, 297, 1952, 1392, 1474, 1665, 6297, 669, 2878, 4241, 12401, 1114, 17474, 1427, 19436, 20754, 9971, 2305, 80110, 19295, 51942, 36428
OFFSET
1,3
COMMENTS
A rooted partition of n is an integer partition of n - 1.
EXAMPLE
The a(9) = 11 rooted twice-partitions:
(7), (61), (52), (43), (421),
(3)(3), (3)(21), (21)(3), (21)(21),
(1)(1)(1)(1),
()()()()()()()().
MATHEMATICA
Table[Sum[PartitionsQ[n/d-1]^d, {d, Divisors[n]}], {n, 50}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 26 2018
STATUS
approved