login
A053197
Number of level partitions of n.
2
1, 1, 2, 2, 4, 3, 6, 5, 10, 8, 13, 12, 21, 18, 27, 27, 42, 38, 54, 54, 77, 76, 101, 104, 143, 142, 183, 192, 249, 256, 323, 340, 432, 448, 550, 585, 722, 760, 918, 982, 1190, 1260, 1502, 1610, 1917, 2048, 2408, 2590, 3053, 3264, 3800, 4097, 4765, 5120, 5910, 6378
OFFSET
0,3
COMMENTS
A partition is level if the powers of 2 dividing its parts are all equal.
LINKS
FORMULA
a(n) = Sum_{k=0..A007814(n)} A000009(n/2^k). a(2*n+1) = A000009(2*n+1) = A078408(n). - Vladeta Jovovic, Sep 29 2004
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-p, p), j=0..n/i)))
end:
a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)
)(iquo(n, 2^j))*2^j, 2^(1+j)), j=0..m)))(ilog2(n)):
seq(a(n), n=0..60); # Alois P. Heinz, Jun 11 2015
MATHEMATICA
a[n_] := Sum[ PartitionsQ[n/2^k], {k, 0, IntegerExponent[n, 2]}]; Table[ a[n], {n, 1, 55}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)
CROSSREFS
Sequence in context: A239966 A341465 A304406 * A275234 A301768 A088145
KEYWORD
nonn,nice
AUTHOR
Vladeta Jovovic, Mar 02 2000
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 11 2015
STATUS
approved