This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053197 Number of level partitions of n. 2
 1, 1, 2, 2, 4, 3, 6, 5, 10, 8, 13, 12, 21, 18, 27, 27, 42, 38, 54, 54, 77, 76, 101, 104, 143, 142, 183, 192, 249, 256, 323, 340, 432, 448, 550, 585, 722, 760, 918, 982, 1190, 1260, 1502, 1610, 1917, 2048, 2408, 2590, 3053, 3264, 3800, 4097, 4765, 5120, 5910, 6378 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A partition is level if the powers of 2 dividing its parts are all equal. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10000 FORMULA a(n) = Sum_{k=0..A007814(n)} A000009(n/2^k). a(2*n+1) = A000009(2*n+1) = A078408(n). - Vladeta Jovovic, Sep 29 2004 MAPLE b:= proc(n, i, p) option remember; `if`(n=0, 1,      `if`(i<1, 0, add(b(n-i*j, i-p, p), j=0..n/i)))     end: a:= n-> (m-> `if`(n=0, 1, add(b(n, (h-> h-1+irem(h, 2)     )(iquo(n, 2^j))*2^j, 2^(1+j)), j=0..m)))(ilog2(n)): seq(a(n), n=0..60);  # Alois P. Heinz, Jun 11 2015 MATHEMATICA a[n_] := Sum[ PartitionsQ[n/2^k], {k, 0, IntegerExponent[n, 2]}]; Table[ a[n], {n, 1, 55}] (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *) CROSSREFS Cf. A049313, A053195. Sequence in context: A267451 A062968 A239966 * A088145 A011754 A090105 Adjacent sequences:  A053194 A053195 A053196 * A053198 A053199 A053200 KEYWORD nonn,nice AUTHOR Vladeta Jovovic, Mar 02 2000 EXTENSIONS a(0)=1 prepended by Alois P. Heinz, Jun 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.