The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053194 a(n) is the smallest number k such that cototient(k) = 2n - 1. 2
 2, 9, 25, 15, 21, 35, 33, 39, 65, 51, 45, 95, 69, 63, 161, 87, 93, 75, 217, 99, 185, 123, 117, 215, 141, 235, 329, 159, 105, 371, 177, 135, 305, 427, 201, 335, 213, 207, 245, 511, 189, 395, 165, 415, 581, 267, 261, 623, 1501, 195, 485, 303, 225, 515, 321, 231 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If the Goldbach conjecture holds, then for all odd numbers InvCot[2s-1] is nonempty. All terms except a(1)=2 are odd numbers. All InvCototient[odd] sets seems to be nonempty, which does not hold for similar inverses of even numbers (see A005278). Are there infinitely many semiprimes in the sequence? - Thomas Ordowski, Oct 07 2016 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 FORMULA a(n) = Min{x : A051953(x)=2n-1}. a(n) < (2n-1)^2 for n > 3 (if the Goldbach conjecture holds). - Thomas Ordowski, Oct 07 2016 EXAMPLE n=18, a(18)=75, phi(75)=40, cototient(75) = 75-40 = 35 = 2*18-1. n=12, a(12)=95 is the smallest in set {95, 119, 143, 529, ...} to the terms of which cototient(95) = cototient(119) = cototient(143) = cototient(529) = 95 - 72 = 119 - 96 = 143 - 120 = 529 - 506 = 23 = 2*12 - 1. MAPLE N:= 1000: # to get a(1) .. a(N) V:= Vector(N): V:= 2: count:= 1: for k from 3 to 10^7 by 2 while count < N do   v:= k - numtheory:-phi(k);   if v::odd  and v <= 2*N-1 and V[(v+1)/2] = 0 then     count:= count+1;     V[(v+1)/2]:= k;   fi; od: convert(V, list); # Robert Israel, Oct 10 2016 MATHEMATICA Table[k = 1; While[k - EulerPhi@ k != 2 n - 1, k++]; k, {n, 120}] (* Michael De Vlieger, Oct 10 2016 *) PROG (PARI) a(n) = k = 1; while (k - eulerphi(k) != 2*n - 1, k++); k CROSSREFS Cf. A005278, A051953. Sequence in context: A097346 A261431 A226388 * A005582 A173965 A116454 Adjacent sequences:  A053191 A053192 A053193 * A053195 A053196 A053197 KEYWORD nonn AUTHOR Labos Elemer, Mar 02 2000 EXTENSIONS Name corrected by Thomas Ordowski, Oct 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 12 17:17 EDT 2020. Contains 336439 sequences. (Running on oeis4.)