login
A300837
a(n) is the total number of terms (1-digits) in Zeckendorf representation of all divisors of n.
11
1, 2, 2, 4, 2, 5, 3, 5, 4, 5, 3, 10, 2, 6, 5, 7, 4, 9, 4, 10, 5, 6, 3, 13, 5, 5, 7, 11, 3, 13, 4, 10, 8, 6, 6, 16, 3, 8, 5, 14, 4, 12, 4, 11, 10, 8, 3, 18, 6, 11, 9, 10, 5, 16, 5, 14, 7, 6, 4, 23, 4, 8, 9, 13, 6, 16, 5, 10, 7, 14, 4, 23, 4, 8, 12, 12, 8, 13, 4, 20, 10, 9, 5, 23, 9, 9, 8, 17, 2, 22, 6, 12, 8, 6, 8, 24, 3, 12, 13, 19, 5, 15, 4, 14, 13
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{d|n} A007895(d).
a(n) = A300836(n) + A007895(n).
For all n >=1, a(n) >= A005086(n).
EXAMPLE
For n=12, its divisors are 1, 2, 3, 4, 6 and 12. Zeckendorf-representations (A014417) of these numbers are 1, 10, 100, 101, 1001 and 10101. Total number of 1's present is 10 (ten), thus a(12) = 10.
PROG
(PARI)
A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); };
A300837(n) = sumdiv(n, d, A007895(d));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 18 2018
STATUS
approved